back to playlist

In algebra and theoretical computer science, an **action** or **act** of a **semigroup** on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are *acting* as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.

An important special case is a **monoid action** or **act**, in which the semigroup is a monoid and the identity element of the monoid acts as the identity transformation of a set. From a category theoretic point of view, a monoid is a category with one object, and an act is a functor from that category to the category of sets. This immediately provides a generalization to monoid acts on objects in categories other than the category of sets.

This page contains text from Wikipedia, the Free Encyclopedia -
https://wn.com/Semigroup_action

© WN 2018

- Connect:
- CHAT

×

Share this video with your family and friends